Protein secretion in Legionella pneumophila and its relation to virulence.
نویسندگان
چکیده
Protein secretion is a universal process of fundamental importance for various aspects of cell physiology including the infection of a host organism by a bacterial pathogen. Many Gram-negative pathogens export virulence-associated proteins across one or two cell membranes to their place of action using a wide plethora of secretory pathways with the objective of infecting the host. For Legionella pneumophila, a facultative intracellular, human pathogen which is ubiquitously found in natural and artificial aquatic environments, two major secretory pathways known to be involved in virulence have been described. These are the PilD-dependent Lsp type II secretion pathway and the type IV secretion system encoded by the dot/icm genes. In addition, a second type IV system, with high sequence similarity to the Agrobacterium tumefaciens VirB system for conjugal transfer of oncogenic DNA, is present. Albeit dispensable for intracellular growth, this type IV system is important for efficient host cell infection at lower temperatures. Further more, evidence exists for the presence of at least one type I secretion system in L. pneumophila as well as for the presence of a twin arginine dependent translocation (Tat) pathway. This is a recently detected, signal peptide-dependent, secretion pathway complementary to the well-known Sec-dependent pathway for protein transport across the cytoplasmic membrane.
منابع مشابه
The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila.
Prepilin peptidases cleave, among other substrates, the leader sequences from prepilin-like proteins that are required for type II protein secretion in Gram-negative bacteria. To begin to assess the importance of type II secretion for the virulence of an intracellular pathogen, we examined the effect of inactivating the prepilin peptidase (pilD) gene of Legionella pneumophila. Although the pilD...
متن کاملStructure of the WipA protein reveals a novel tyrosine protein phosphatase effector from Legionella pneumophila
Legionnaires' disease is a severe form of pneumonia caused by the bacterium Legionella pneumophila. L. pneumophila pathogenicity relies on secretion of more than 300 effector proteins by a type IVb secretion system. Among these Legionella effectors, WipA has been primarily studied because of its dependence on a chaperone complex, IcmSW, for translocation through the secretion system, but its ro...
متن کاملbdhA-patD operon as a virulence determinant, revealed by a novel large-scale approach for identification of Legionella pneumophila mutants defective for amoeba infection.
Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular parasite of eukaryotic cells. In the environment, it colonizes amoebae. After being inhaled into the human lung, the bacteria infect and damage alveolar cells in a way that is mechanistically similar to the amoeba infection. Several L. pneumophila traits, among those the Dot/Icm type IVB protein secretion ...
متن کاملAn immunoprotective molecule, the major secretory protein of Legionella pneumophila, is not a virulence factor in a guinea pig model of Legionnaires' disease.
We have examined whether a molecule that is capable of inducing immune protection, the major secretory protein (MSP) of Legionella pneumophila, is required for virulence in a guinea pig model of Legionnaires' disease. To do so, we have compared the virulence in guinea pigs of an isogenic pair of L. pneumophila, Philadelphia 1 strain, one of which produces MSP (MSP+) and one of which does not (M...
متن کاملLegionella pneumophila pathogenesis in the Galleria mellonella infection model.
Legionella pneumophila is a facultative intracellular human pathogen and the etiological agent of severe pneumonia known as Legionnaires' disease. Its virulence depends on protein secretion systems, in particular, the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication-permissive vacuole in macrophages. The analysis of the role of these systems and their subst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEMS microbiology letters
دوره 238 2 شماره
صفحات -
تاریخ انتشار 2004